If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5q^2=20q
We move all terms to the left:
5q^2-(20q)=0
a = 5; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·5·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*5}=\frac{0}{10} =0 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*5}=\frac{40}{10} =4 $
| -3.2t^2+25t-195=0 | | 1718f+——=88—22 | | 8y-14=14 | | -6=3b-4-2 | | 7x/9=x/2+5 | | 5b-8=22 | | 7s+5(2-s=-10) | | t-(-1)=15 | | 340=17x | | |-9x|=45 | | 0=-6+4x | | 17x-4-16x=15 | | 3^2+4^2=x^2 | | 3x+7=-4x-2 | | 5b+40=6(3b-2) | | 2x-14=4x-2 | | 4x-3=3=2x+9 | | 1/4(x+12)+1/6(x+6)=x+8 | | -126=7(2r-5)-7 | | (7z+2)2+400=0 | | 4+c=8 | | -5(2w+2)-w=34 | | (7z+2)^2+400=0 | | 2x-20=4x-2 | | 6(5x-4)+10=5(x-2)-(-24x+1) | | 6(4z-1)-2(z+8)=13(z+1) | | 7x+8=-14 | | 3(u-4)=-3u+30 | | 20=20/z | | 7y+4=5y+6 | | -2(8-5x)=-86 | | 2y+20=-4(y-8) |